ASSIGNMENT SET - I

Department of Mathematics
 Mugberia Gangadhar Mahavidyalaya

B.Sc Hon.(CBCS)

Mathematics: Semester-V
Paper Code: C11T

[Partial Differential Equations and Application]

Answer all the questions

1. From a PDE when $\varphi(u, v)=0$, where $u=x+y+z, v=x^{2}+y^{2}+z^{2}$.
2. Define quasi-linear and semi-linear partial differential equation.
3. Define 'Dirichlet boundary condition' and 'Neumann boundary condition'.
4. Give the geometrical interpretation of Cauchy IVP $u_{t}+c u_{x}=0, x \in R, t>0$ where $u(x, 0)=f(x), x \in R$.
5. Write the different types of first order PDE with standard form.
6. Show that the solution of the PDE: $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0$ is of the form $\left.f^{y} / x\right)$.
7. A particle describes a curve $s=c \tan \psi$ with uniform speed v . Find the acceleration indicating its direction.
8. What is ballistics? Write different types of ballistics.
9. Prove that a planet has only radial acceleration towards the Sun.
10. Let $u(x, t)$ be the solution of the equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}$ with $u(x, 0)=\cos (5 \pi x)$ and $\quad \frac{\partial u}{\partial t}(x, 0)=0$. Then prove that $u(1,1)=1$.
11. Find the characteristic curve of PDE: $2 y \frac{\partial u}{\partial x}+\left(2 x+y^{2}\right) \frac{\partial u}{\partial y}=0$ which is passing through the point $(0,0)$.
12. Prove that at an apse on a central orbit, the velocity is proportional to the reciprocal of the radius vector.
13. Find PDE corresponding to the equation $z=x y+f\left(x^{2}+y^{2}\right), f$ being an arbitrary function.
14. What is the nature of the second order PDE $\frac{\partial^{z} z}{\partial y^{a}}-y \frac{\partial^{z} z}{\partial x^{z}}+x z=0$?
15. If a particle moves on a curve $\sqrt{r} \cos \frac{\theta}{2}=\sqrt{a}$ with cross-radial velocity constant then show that the velocity of the particle is constant.
16. Obtain the solution of the wave equation $u_{t t}=c^{2} u_{x x}$ under the following conditions: $u(0, t)=u(2, t)=0, u(x, 0)=\sin \frac{\pi x}{2}, u_{t}(x, 0)=0$.
17. A particle is projected with velocity V from the cusp of a smooth inverted cycloid down the arc, show that the time of reaching the vertex is $2 \sqrt{\frac{a}{g}} \tan ^{-1} \sqrt{\frac{4 a g}{v}}$.
18. Find the complete integral of the PDE $z^{2}=\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} x y$, by Charpit's method.
19. A particle describes an ellipse under a force $\frac{\mu}{(\text { distance })^{2}}$ towards the focus; if it was projected with velocity V from a point distance r from the centre of the force, show that its periodic time is
20. Solve the following: $\left(D^{2}+5 D D^{\prime}+D^{\prime 2}\right) z=0$ where $D \equiv \frac{\partial}{\partial x}$ and $D^{\prime} \equiv \frac{\partial}{\partial y}$.
21. Find the solution of $z^{2}=p q x y$.
22. Solve: $\quad\left(x^{2} D^{2}-2 x y D D^{\prime}+y^{2} D^{\prime 2}-x D+3 y D^{\prime}\right) u=8 \frac{y}{x} . \quad$ Symbols have their usual meaning.
23. Establish the Laplace equation in polar coordinates.
24. Find the solution of $\left(D^{2}-D D^{\prime}-2 D^{\prime 2}\right) z=(y-1) e^{x}$, Where $D=\frac{\partial}{\partial x}$ and $D^{\prime}=\frac{\partial}{\partial y}$.
25. Solve the following PDE: $\left(x^{2} D^{2}-4 x y D D^{\prime}+4 y^{2} D^{\prime 2}+6 y D^{\prime}\right) z=x^{3} y^{4}$ Where $D=\frac{\partial}{\partial x}$ and $D^{\prime}=\frac{\partial}{\partial y}$.
26. Find the integral surface of the linear PDE $(x-y) p+(y-z-x) q=z$ which passes through the circle $x^{2}+y^{2}=1, z=1$.
27. Reduce the following equation to a canonical form and hence solve $y u_{x x}+(x+y) u_{x y}+x u_{y y}=0$.
28. Find the general integral of the PDE $p^{2} y\left(1+x^{2}\right)=q x^{2}$.
29. Establish the d' Alembert's formula for solve the Cauchy problem for homogeneous wave equation.
30. Find the PI of the $\operatorname{PDE}\left(D^{2}+D D^{\prime}+D^{\prime}-1\right) z=\sin (x+2 y)$.
31. What are the main difference between an ODE and PDE?
32. Eliminate the arbitrary function f and F from $\mathrm{y}=\mathrm{f}(\mathrm{x}-$ $a t)+F(x+a t)$.
33. Solve the problem $u_{t t}-u_{x x}=0 \quad 0<x<\infty, 0<t$, $u(0, t)=\frac{t}{1+t}, \quad 0 \leq t, u(x, 0)=u_{t}(x, 0)=0,0 \leq t<\infty$.
34. Find the solution of the following problem $u_{x}+x^{2} u_{y}=0$ with $u(x, 0)=e^{x}$.
35. Let $u(x, y)$ solve the Cauchy problem $\frac{\partial u}{\partial y}-x \frac{\partial u}{\partial x}+u-1=0$ where $-\infty<x<\infty, y \geq 0$ and $u(x, 0)=\sin x$. Then find the value of $u(0,1)$.
36. Consider the initial value problem $\frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(0, y)=4 e^{-2 y}$. Then find the value of $u(1,1)$.
37. Find the complete integral of the PDE $\frac{\partial^{x} u}{\partial x^{x}}+2 \frac{\partial^{x} u}{\partial x \partial y}+\frac{\partial^{x} u}{\partial y^{2}}=x e^{x+y}$.
38. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be a particular integral of the partial differential equation $\frac{\partial^{z} z}{\partial x^{2}}-\frac{\partial z}{\partial y}=2 y-x^{2}$. Then find the value of $\mathrm{P}(2,3)$.
39. Let u be the unique solution of $\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{a}}=0, x \in R, t>0, u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=0, x \in R$. Where $f(x)=x(1-x), \forall x \in[0,1]$ and $f(x+1)=f(x) \forall x \in R$. Then find the value of $u\left(\frac{1}{2}, \frac{5}{4}\right)$.
40. Let $u(x, t)$ satisfy the initial boundary value problem $u_{t}=u_{x x} ; x \in(0,1), t>0$, $u(0, t)=u(1, t 0=0, t>0$. Then find the value of $u\left(x, \frac{1}{\pi^{2}}\right), x \in(0,1)$.
41. Let $u(x, t)$ be the solution of $\frac{\partial^{a} u}{\partial t^{z}}-\frac{\partial^{{ }^{z}} u}{\partial x^{x}}=x t, \quad-\infty<x<\infty, t>0$,
$u(x, 0)=\frac{\partial u}{\partial t}(x, 0)=0, \quad-\infty<x<\infty$. Then find the value of $u(2,3)$.
42. Let $u(x, t)$ satisfy the initial boundary value problem $\frac{\partial^{z^{z}}}{\partial t^{z}}=\frac{\partial^{v^{x}}}{\partial x^{z}} \quad 0<x<\infty, t>0 \quad u(x, 0)=\cos \left(\frac{\pi x}{2}\right), 0 \leq x<\infty$ $\frac{\partial u}{\partial t}(x, 0)=0,0 \leq x<\infty, \frac{\partial u}{\partial x}(0, t)=0, t \geq 0$. Then find the value of $u(2,2)$ and $u\left(\frac{1}{2}, \frac{1}{2}\right)$.
